a. and sb. Math. [ad. L. type *quadric-us, f. quadra square: see -IC.]

1

  A.  adj. Of the second degree. (Used in solid geometry, and where the variables are more than two.)

2

1858.  A. Cayley, Wks. (1889), II. 497. The case of any quadric function of n variables.

3

1865.  Athenæum, No. 1950. 352/2. ‘On Quadric Inversion,’ by Dr. Hirst.

4

1884.  A. S. Hart, in Hermathena, X. 164. Such curves … can be traced on a quadric surface. Ibid., 166. Two of the given equations will represent quadric cones.

5

  B.  sb. A quantic or surface of the second degree.

6

1856.  A. Cayley, Wks. (1889), II. 271. The tables Nos. 1 and 2 are the covariants of a binary quadric.

7

1881.  Maxwell, Electr. & Magn., I. 215. A variable parameter, which we shall distinguish by a suffix for the species of quadric.

8

1884.  A. S. Hart, in Hermathena, X. 164. There are many such [twisted algebraic] curves which do not lie on any quadric.

9